

REPUBLIC OF TURKEY Prime Ministry Disaster And Emergency Management Presidency, Earthquake Department, Ankara – TURKEY

REPORT ON VAN EARTHQUAKE (EASTERN TURKEY) (MI=6.7 Mw=7.0)

CONTRIBUTORS

This study was prepared by **Prime Ministry**, **Disaster and Emergency Management Presidency**, **Earthquake Department**

In addition, the various stages of work;

Dear Prof. Dr. Ali KOÇYİĞİT and Dear Prof. Dr. Mithat Fırat ÖZER (member of AFAD Earthqauke Advisory Board)

Dear Colonel Onur LENK, (General Command of Mapping)

Dear Zahide ÇOLAKOĞLU, (Van Disaster and Emergency Management Direction)

Dear Prof. Dr. Mehmet ÇELEBİ, Dr. Thomas Holzer ve Dr. Katherine Sharer, (USGS)

Dear Prof. Dr. Jens HAVSKOV (Norway Bergen University)

have been involved

INDEX

Chapter No		Page No
	CONTRIBUTORS	ii
	INDEX	iii
	TABLE OF FIGURES	vi
	TABLES	viii
	GRAPHS	viii
	ABBREVIATIONS	ix
1	General Characteristic of Earthquake	1
2	Re-Location Studies by the Help of HYPODD (<i>Double-Difference Hypocenter Location</i>)	6
3	Focal Mechanism Solutions	7
4	Seismic Energy	10
5	Historical and Instrumental Seismicity	12
6	Effects of Earthquake on the Field	14
7	Surface Faulting Studies	15
8	In-SAR Studies	20
9	Secondary Effects Caused by the Earthquake	22
10	Evaluation of Strong Motion Records	24
11	Corrected Acceleration-Time, Velocity-Time and Displacement-Time Waveforms	27
12	Effective Durations of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6	32
13	Fourier Spectrums of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6	33
14	Response Spectrums of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6	35
15	Compare with Acceleration Response Spectrum and Design Spectrum of 23 October 2011 Van Earthquake MI=6.7 and 09 November 2011 Van-Edremit Earthquake MI=5.6	37
16	Compare with Some Attenuation Relationship of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6	38
17	Structural Damage Assessment	40
18	Seismcic Intesity Analysis	44
19	Using Orthophoto and Satellite Image in Van Earthquake	46
	REFERENCES	54

TABLE OF FIGURES

Figure		Page		
110	Enicenteral coordinate of Van Earthquake (according to different	110		
1.1	institutions)	2		
1.2	Moment Magnitude Solution of Van Earthquake	2		
1.3	Aftershock distribution of Van Earthquake	3		
1.4	Distribution of depth (AA' cross-section)	3		
1.5	Van-Edremit earthquake (Ml=5.6) and aftershocks distribution	5		
2.1	Distribution of Van Earthquake (Mw=7.0) aftershocks ((a) before hypodd, (b) after hypodd)			
2.2	DisDistribution of Van-Edremit (Ml=5.6) Earthquake aftershocks ((a) before hypodd, (b) after hypodd)	6		
3.1	Tectonic lines in Van and surroinding region. (Koçyiğit, A.2011, verbal discussing)	7		
3.2	Focal mechanism solutions of $M \ge 5$ earthquakes (according to P wave first motion)	8		
3.3	Focal mechanism solutions of some earthquakes magnitude between 4 and 4.8 (according to P wave first motion)	8		
3.4	Moment tensor solution map and table of some earthquakes 3.4 (M>4)			
5.1	Distribution of the earthquakes that occurred Van and Surrounding region from1900 to present M> 4 (except 2011 earthquakes)			
5.2	Damaging earthquakes in instrumental period			
5.3	Centroid moment tensor solutions of 2001 and 2004 earthquakes	14		
6.1	Investigation areas in the field	14		
7.1	3D Topographic map showing the fault	15		
7.2	Deformation that is observed on the Van-Erciş Highway	16		
7.3	a) Surface break on the Topaktaş way.	17		
	b) Deformation on the irrigation canal	1 /		
7.4	Deformation on the irrigation canal depends on the compression regim	17		
7.5	Surface deformation and fault escarpment (NE part of organized industrial site)	18		
7.6	3D Digital elevation model map	19		
7.7	Shaded relief map showing the morphology of the fault	19		
8.1	COSMO-SkyMed (CSK) interferogram (InSAR) image (20 cm			
8.2	Photos about traces of algae on the limestone (west cost of Erçek Lake)	21		
9.1	Secondary effets examples	22		
9.2	Liquefaction between Arısu-Topaktaş villages (Orthophoto image produced by General Command of Mapping)	23		
9.3	Surface deformation examples	23		
	•			

	Distribution of the recorded stations and peak ground					
10.1	accelerations for 23 October 2011, MI=6.7, Mw=7.0 Van					
	Earthquake	25				
10.2	Accelerations for 09 November 2011 Ml=5.6 Van-Edremit	26				
10.2	Farthquake	20				
	Distribution of The Recorded Stations and Peak Ground					
10.3	Accelerations for 18 November 2011, MI=5.2 Van Muradiye	27				
	Earthquake					
	NS direction acceleration, velocity and displacement components					
11.1	for 23 October 2011, Ml=6.7 Van-Merkez Earthquake	27				
	(Muradiye station)					
11.0	EW direction acceleration, velocity and displacement	20				
11.2	components for 23 October 2011, MI=6.7 Van-Merkez	28				
	Vertical direction acceleration velocity and displacement					
113	components for 23 October 2011 MI=6.7 Van-Merkez	28				
11.0	Earthquake (Muradive station)					
	NS direction acceleration, velocity and displacement components					
11.4	for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Bitlis	29				
	station)					
11.5	EW direction acceleration, velocity and displacement	•				
11.5	components for 23 October 2011, MI=6.7 Van-Merkez	29				
	Vertical direction acceleration velocity and displacement					
11.6	components for 23 October 2011 MI=6.7 Van-Merkez	30				
11.0	Earthquake (Bitlis station)	50				
	NS direction acceleration, velocity and displacement components					
11.7	for 09 November 2011, Ml=5.6 Van-Edremit Earthquake (Van-	30				
	Merkez station)					
11.0	EW direction acceleration, velocity and displacement	21				
11.8	components for 09 November 2011, MI=5.6 Van-Edremit	31				
	Vertical direction acceleration velocity and displacement					
119	components for 09 November 2011 MI=5.6 Van-Edremit	31				
11.7	Earthquake (Van-Merkez station)	51				
	23 October 2011 Ml=6.7 Van-Merkez Earthquake effective					
12.1	durations a) Muradiye station record N-S direction, b) Bitlis	32				
	station record E-W direction					
10.0	09 November 2011 Ml=5.6 Van-Edremit Earthquake effective					
12.2	durations a) Van station record E-W direction, b) Van-Edremit	32				
	Station record E-w direction Fourier spectrums of 23 October 2011 MI=6.7 Van Merkez					
	earthquake					
13.1	a) Muradive record NS direction.	33				
	b) Muradiye record EW direction					
	Fourier spectrums of 23 October 2011, Ml=6.7 Van-Merkez					
13.2	earthquake a) Bitlis record NS direction,	33				
	b) Bitlis record EW direction.					

12.2	Fourier spectrums of 09 November 2011, Ml=5.6 Van-Edremit earthquake			
13.3	a) Van record NS direction b) Van record EW direction	34		
	Fourier spectrums of 09 November 2011, MI=5.6 Van-Edremit			
13.4	earthquake	3/		
13.4	a) Edremit record NS direction	54		
	b) Edremit record EW direction			
	Response spectrums of 23 October 2011, MI=6.7 Van-Merkez			
14.1	eartinguake			
	b) Muradive record FW component			
	Response spectrums of 23 October 2011 MI=6 7 Van-Merkez			
14.0	earthquake	2.5		
14.2	a) Bitlis record NS component	35		
	b) Bitlis record EW component			
	Response spectrums of 09 November 2011, MI=5.6 Van-Edremit			
143	earthquake	36		
11.5	a) Van-Merkez record NS component	50		
	b) Van-Merkez record EW component			
	Response spectrums of 09 November 2011, MI=5.6 Van-Edremit			
14.4	earthquake			
	b) Van-Edremit record FW component			
1.5.1	Compare with Muradive station NS and EW component response	25		
15.1	spectrum and TDY 2007 design spectrum	37		
15.2	Compare with Van-merkez station NS and EW component			
13.2	response spectrum and TDY 2007 design spectrum	57		
	Compare with peak ground horizontal acceleration value and some			
16.1	attenuation relationship for 23 October 2007 Mw=7.0 VanMerkez	38		
	earthquake(soil group:B)			
16.2	Compare with peak ground horizontal acceleration value and some	20		
10.2	earthquake(soil group:())	30		
	Compare with peak ground horizontal acceleration value and			
16.3	some attenuation relationship for 09 November 2011 Mw=5.7	39		
	Van-Edremit earthquake(soil group:B)			
	Compare with peak ground horizontal acceleration value and			
16.4	some attenuation relationship for 09 November 2011 Mw=5.7	39		
	Van-Edremit earthquake(soil group:C)			
	Examples of weak storey and slab effect. (a. Weak storey, b.			
17.1	Weak storey and asmolen slab, c. Ground floor destroyed.			
17.2	d. Heavy slad)	41		
17.2	Crumbly concrete example	41		
17.5	Weak storey example	42		
т,,т	a) Striped reinforcement b) Striped reinforcement	72		
17.5	c) insufficient stirrup and shell concrete	42		

17.6	a) Briquet filled collapsed building, b) Adobe filled collapsed building c)Adobe+briquet filled collapsed building, d) Fine grained binding material (cat litter) e) Collapse to corner join	43				
18.1	Peak ground acceleration distribution of 23 October 2011, $M_w=7.0$ Van-Merkez earthquake					
18.2	Seismic intensty map of 23 October 2011, M _w =7.0 Van-Merkez earthquake	45				
18.3	Peak ground acceleration distribution of 09 November 2011, $M_w=5.7$ Van-Edremit earthquake	45				
18.4	Seismic intensity map of 09 November 2011, M_w =5.7 Van- Edremit earthquake	46				
19.1	WorldView-2 (2.0 m resolution) image before earthquake.(Van)					
19.2	WorldView-2 (0.5 m resolution) image before earthquale (Erciş)	47				
19.3	QiuckBird-2 (0.6 m resolution) image after the earthquake (Erciş)	48				
19.4	QiuckBird-2, Iconos images after the earthquake (Erciş) (red triangles show a heavy damage collapse building, yellow triangles show a potantial damage building and green polygons show a tent city)	49				
19.5	Determination of collopsed building in Erciş village a) before earthquake, b) after earthquake	50				
19.6	Erciş village image after the earthqauke					
19.7	Van city center image after the earthqauke					
19.8	3D orthophoto image of Erciş	53				

TABLES

Table No		Page No
4.1	Released energy (Mw=7.0)	10
4.2	Total released energy between 23 October – 09 December	10
5.1	Historical period seismicity	12
5.2	Damaging earthquakes in instrumental period	13
6.1	Geographical descriptions related to investigation area	15
10.1	Acceleration Values and Site Information for the 23 October 2011 MI=6.7, Mw=7.0 Van Earthquake	24
10.2	Acceleration Values and Site Information for the 09 November 2011, MI=5.6 Van- Edremit Eartquake	25
10.3	Acceleration Values and Site Information for the 18 November 2011, MI=5.2 Van Muradiye Earthquake	26
19.1	Satellite image and features before the earthquake	46
19.2	Satellite image and features after the earthquake	48
19.3	Orthophoto image and features before the earthquake	49
19.4	Orthophoto image and features after the earthquake	50

GRAPHS

Graph No		Page No				
1.1	Aftershock activity in approximately 45 days					
1.2	Magnitude-Count graph (between September, 23 and December,09)	4				
1.3	Magnitude-Count graph (according to magnitude range)					
4.1	Daily released energy (except main shock)	11				

ABBREVIATIONS

AFAD: Disaster and Emergency Management Presidency **GIS:** Geographic Information Systems CHARTER: Using of Space Technology in the Natural Disaster DLR: German Aerospace Center EMSC-CSEM: European-Mediterranean Seismological Center HGK: General Command of Mapping MMI: Modified Mercalli Intensity Scale MTA: General Directorate of Mineral Research and Exploration MI: Local Magnitude Mw: Moment Magnitude **OIS: Organized Industrial Site** PGA: Peak Ground Acceleration PGD: Peak Ground Displacement PGV: Peak Ground Velocity SED: Swiss Seismological Service **DEM: Digital Elevation Model** TDY-2007: Turkish Earthquake Resistant Code 2007 TOKİ: Housing Development Administration TR-KYH: National Strong Motion Observation Network TS: Local Time USGS: US. Geological Survey Z3: Soil Class

1. General Characteristic of Earthquake

A destructive earthquake occurred 20 km. North of Van City Center near Kasımoğlu Village (West of Erçek Lake) on 23 October 2011 at 13:41 local time. According to the National Seismological Observation Network, operated by Prime Ministry Disaster and Emergency Management Presidency (AFAD) magnitude of earthquake is MI:6.7 and the depth is 19.07 km. Epicentral coordinates are determined as 38.68N-43.47E (Fig.1.1). After comprehensive calculations, moment magnitude is calculated as Mw:7.0 for this earthquake with the help of the program which is called SEISAN. It was developed by Jens HAVSKOV (Fig.1.2).

Immediately after the event, all necessary information about the earthquake was transmitted to National Crisis Management Center established at AFAD headquarters and to high level local authorities of Van. Team of AFAD Earthquake Department reached to Van with Deputy Prime Minister responsible from disaster and emergency management 4 hours after the event and contributed to crisis management at Van. Field studies also initiated immediately after the AFAD Team reached to Van and Erciş.

According to the information given by AFAD, 644 people lost their lives and 252 people were saved alive from the debris. AFAD informed that, by 09 December 2011, 17005 dwelling units were determined as collapsed and/or heavily damaged in Van City Center, Erciş and villages.

23 October 2011 Van-Merkez earthquake is unique from several aspects. Very high number of aftershocks within short period after the event, was not experienced previously. Within the first week of the earthquake, there happened *114* earthquakes with magnitudes between 4.0 and 4.9 and 7 earthquakes with magnitudes bigger then MI:5.0. Within the first month after the event daily average aftershock number is around *180* earthquakes. By 09 December 2011, the number of aftershocks reached to *6284*. Focal depths of aftershocks varies between 2.5 km and 25 km. (Fig.1.3,1.4) (Graph 1.1,1.2,1.3).

During the very intense aftershock activity of the Van-Merkez earthquake, another earthquake occurred at 10 km. South of Van, near Edremit Province on 09 November 2011 at 21.23 local time. The magnitude of this earthquake was calculated as MI:5.6 (Mw:5.7) (Fig.1.5).

Figure 1.1: Epicenteral coordinate of Van Earthquake (according to different institutions)

Mw_Solution - Not Defteri	
Dosya Düzen Biçim Görünüm Yardı	lim
date hrmn sec 111023 1041 18.26 38.68N stn dist azm ain w VMUR 34 23.4 38.8 0 GEVA 54 215.4 37.0 0 BASK 89 144.7 36.1 0 DYDN 95 14.2 36.1 0 EKAR 132 297.8 35.8 0 EATA 151 328.3 35.8 0 CUKT 163 174.0 35.8 0 VRTB 177 287.0 35.8 0 DIGO 189 358.9 35.8 0 HOMI 197 319.2 35.8 0 BNGL 199 278.5 35.8 0 SVAN 203 252.9 35.8 0 BNGL 199 278.5 35.8 0 SVAN 203 252.9 35.8 0 BNGL 199 278.5 35.8 0 EAK 220 4.2 32.2 0 EAK 220 4.2 32.2 0 EAK 220 4.2 32.2 0 EAK 220 4.2 32.2 0 EAK 290 300.9 26.3 0 KOPT 290 300.9 26.3 0 Return to continue, q to	lat long depth no m rms damp erln erlt erdp 43 47.0E 19.02 15 3 0.69 0.000 9.6 5.1209.1 phas calcphs hrmn tsec t-obs t-cal res wt di P PN5 1041 25.2 6.96 7.31 -0.35 1.00 14 P PN6 1041 28.7 10.47 10.77 -0.30 1.00 12 P PN7 1041 34.9 16.62 16.69 -0.07 1.00 21 P PN7 1041 36.6 18.38 17.74 0.64 1.00 10 P PN7 1041 36.6 18.38 17.74 0.64 1.00 10 P PN8 1041 43.7 25.41 27.07 -1.66 0.99*6 P PN8 1041 50.7 32.44 31.13 1.31 0.73*5 P PN8 1041 51.3 36.83 34.60 2.23 0.53*2 P PN8
SVAN BZ gdist: 203 BNGL BZ gdist: 199 BTMN BZ gdist: 209 ELZG BZ gdist: 387 DIYA BZ gdist: 301 KOPT BZ gdist: 290 Number of spectra availa 2011 1023 1041 18.3 L 3	3.0 mom: $19.8 mw = 7.1$ $9.0 mom$: $19.5 mw = 6.9$ $9.0 mom$: $19.3 mw = 6.8$ $7.0 mom$: $19.7 mw = 7.1$ $1.0 mom$: $19.3 mw = 6.8$ $0.0 mom$: $19.6 mw = 7.0$ $able$ and number used in average $6 mw = 68$ $88.710 43.417 18.0 DDA 18 1.1 7.0WDDA$

Figure 1.2: Moment Magnitude Solution of Van Earthquake

Figure 1.3: Aftershock distribution of Van Earthquake

Figure 1.4: Distribution of depth (AA' cross-section)

Graph 1.1: Aftershock activity in approximately 45 days.

Graph 1.2: Magnitude-Count graph (between September,23 and December,09)

Graph 1.3: Magnitude-Count graph (according to magnitude range)

Figure 1.5: Van Edremit earthquake (Ml=5.6) and aftershocks distribution.

2. Re-Location Studies by the Help of HYPODD (Double-Difference Hypocenter Location)

In this study, 1400 aftershocks data (M>=3.0) for Van Earthquake (Mw=7.0) and 150 aftershocks data (M>=2.6) for Van-Edremit earthquake (Ml=5.6) were used from 1900 to present. Aftershock distribution were re-located by the help of Hypodd (Fig.2.1,2.2).

Figure 2.1:Distribution of Van Earthquake (Mw=7.0) aftershocks ((a) before hypodd, (b) after hypodd)

Figure 2.2:Distribution of Van-Edremit (Ml=5.6) Earthquake aftershocks ((a) before hypodd, (b) after hypodd)

3. Focal Mechanism Solutions

The area between Van and Erciş is tectonically complex and there are several faults with different characteristics (Fig.3.1). The reason for such big amount of aftershocks and diversity of the focal mechanism solutions are due to this tectonic complexity. Very generally, earthquake with Mw:7.0 at 19 km. depth activated this systems and small scaled faults triggered one and each other within this period and increased the earthquake activity.

Focal mechanism solutions of Mw:7.0 earthquakes reveal East-West oriented thrust fault mechanism. Since there were no evidence to thrust faulting in the field as fault rupture, morphological indicators, secondary effects of earthquake like mass movements show that east-west oriented thrust fault named as "Everek Fault" is the primary source of this event. The location of the event also supports this relation. During field studies performed around Van and Erciş, several earthquake triggered secondary events like landslides, rockfalls, liquefaction and lateral spreading were observed.

Focal mechanism solutions of 160 earthquakes after 23 October and 09 November earthquakes were analysed and correlated with regional fault maps of the region in order to reveal their occurrence mechanisms (Fig 3.2,3.3,3.4).

Figure 3.1: Tectonic lines in Van and surroinding region. (Koçyiğit, A.2011, verbal discussing)

Figure 3.2: Focal mechanism solutions of $M \ge 5$ earthquakes (according to P wave first motion)

Figure 3.3: Focal mechanism solutions of some earthquakes magnitude between 4 and 4.8 (according to P wave first motion)

No	Date (UTC)	Latitude	Longitude	Depth	ML	Mw	Мо	Strike	Dip	Rake	Agency Code
1	23/10/2011 10:41	38.689	43.4657	19.02	6.7	7.1	5.60E+19	106	49	123	USGS
2	23/10/2011 10:56	38.7825	43.3633	19.92	5.8	5.3	6.84E+16	53	73	81	DDA
3	23/10/2011 11:10	38.7702	43.3945	6.34	4.8	4.8	1.29E+16	133	70	-161	DDA
4	23/10/2011 11:32	38.7778	43.3947	22.61	5.5	5.5	1.40E+17	275	39	178	DDA
5	23/10/2011 13:07	38.673	43.2019	11.68	4.4	4.2	1.64E+15	69	50	111	DDA
6	23/10/2011 15:24	38.5905	43.149	21.55	4.7	4.5	4.70E+15	89	51	119	DDA
7	23/10/2011 15:57	38.7173	43.3265	21.78	4.6	4.4	3.10E+15	293	87	-164	DDA
8	23/10/2011 16:05	38.7518	43.508	20.85	4.8	4.5	3.98E+15	192	65	-6	DDA
9	23/10/2011 18:10	38.629	43.192	19.81	5	4.8	1.12E+15	86	38	98	DDA
10	23/10/2011 19:06	38.7358	43.328	22.09	5	4.5	4.11E+15	64	66	94	DDA
11	23/10/2011 20:45	38.6447	43.1275	6.79	5.8	5.6	2.27E+17	92	45	78	DDA
12	24/10/2011 04:18	38.6808	43.31	12.58	4.5	4	9.84E+14	216	52	79	DDA
13	24/10/2011 08:49	38.706	43.5823	17.27	5	4.5	5.21E+15	256	42	93	DDA
14	24/10/2011 18:28	38.693	43.1475	18.71	4.8	4.7	1.11E+16	64	51	83	DDA
15	25/10/2011 14:55	38.823	43.5857	17.44	5.4	5.4	8.88E+16	259	45	88	DDA
16	26/10/2011 02:59	38.828	43.5063	14.81	4.6	4.2	1.37E+15	50	65	-4	DDA
17	26/10/2011 23:42	38.6252	43.1637	18.68	4.6	4	9.15E+14	98	58	123	DDA
18	27/10/2011 15:41	38.8937	43.539	6.96	4.1	4.2	1.46E+16	108	72	173	DDA
19	29/10/2011 22:24	38.9245	43.5438	16.67	4.8	4.9	1.83E+16	66	90	-125	DDA
20	30/10/2011 01:55	38.724	43.6143	21.45	4.5	4.1	1.35E+16	287	68	159	DDA
21	2/11/2011 04:38	38.865	43.534	12.27	4.1	4.3	2.52E+15	9	60	-39	DDA
22	8/11/2011 22:05	38.7192	43.0778	8.36	5.4	5	2.59E+16	266	35	88	DDA
23	9/11/2011 19:23	38.4382	43.2825	21.47	5.6	5.6	1.26E+17	178	76	-34	DDA
24	14/11/2011 22:08	38.7038	43.0833	23.32	5.1	5	1.88E+16	282	32	65	DDA

Figure 3.4: Moment tensor solution map and table of some earthquakes $(M \ge 4)$

4. Seismic Energy

The amount of energy released after 23 October 2011 earthquake is calculated as 2.09×10^{15} Joule (Table 4.1). which is 33.2 times bigger than the amount of atom bomb released to Hiroshima-Japan. When considering the aftershocks, the amount increases to 2.36×10^{15} Joule which is equal to 37 atom bombs (Table 4.2, Graph 4.1).

Table 4.	1: Re	leased	energy	(Mw=7.0)))
1 4010 1.	1.1.0	icubea	chief,	(1111) /	,,

Magnitude	Energy (erg)	Energy (joule)
Mw=7.0	2.09x10 ²²	2.09x10 ¹⁵

Day	Energy (Erg)	Energy (Joule)
23.10.2011 (except main shock)	1.15x10 ²¹	1.15x10 ¹⁴
24.10.2011	1.33x10 ²⁰	1.33x10 ¹³
25.10.2011	1.03x10 ²⁰	1.03x10 ¹³
26.10.2011	7.11x10 ¹⁹	7.11x10 ¹²
27.10.2011	2.30x10 ¹⁹	2.30x10 ¹²
28.10.2011	2.99x10 ¹⁹	2.99x10 ¹²
29.10.2011	4.60x10 ¹⁹	4.60x10 ¹²
30.10.2011	1.93x10 ¹⁹	1.93x10 ¹²
31.10.2011	1.01x10 ¹⁹	1.01x10 ¹²
01.11.2011	1.15x10 ¹⁹	1.15x10 ¹²
02.11.2011	4.23x10 ¹⁹	4.23x10 ¹²
03.11.2011	8.05x10 ¹⁸	8.05x10 ¹¹
04.11.2011	8.32x10 ¹⁸	8.32x10 ¹¹
05.11.2011	1.58x10 ¹⁹	1.58x10 ¹²
06.11.2011	1.85x10 ¹⁹	1.85x10 ¹²
07.11.2011	3.05x10 ¹⁹	3.05x10 ¹²
08.11.2011	1.16x10 ²⁰	1.16x10 ¹³
09.11.2011	2.2x10 ²⁰	2.2x10 ¹³
10.11.2011	5.74x10 ¹⁸	5.74x10 ¹¹
11.11.2011	6.16x10 ¹⁸	6.16x10 ¹¹
12.11.2011	1.83x10 ¹⁹	1.83x10 ¹²
13.11.2011	6.81x10 ¹⁸	6.81x10 ¹¹
14.11.2011	5.70x10 ¹⁹	5.70x10 ¹²
15.11.2011	4.39x10 ¹⁸	4.39x10 ¹¹
16.11.2011	2.95x10 ¹⁸	2.95x10 ¹¹
17.11.2011	9.17x10 ¹⁸	9.17x10 ¹¹
18.11.2011	5.69x10 ¹⁹	5.69x10 ¹²
19.11.2011	2.37x10 ¹⁸	2.37x10 ¹¹
20.11.2011	3.13x10 ¹⁸	3.13x10 ¹¹
21.11.2011	1.86x10 ¹⁹	1.86x10 ¹²
22.11.2011	1.17x10 ¹⁹	1.17x10 ¹²
23.11.2011	1.13x10 ¹⁸	1.13x10 ¹¹
24.11.2011	6.90x10 ¹⁸	6.90x10 ¹¹
25.11.2011	2.40x10 ¹⁸	2.40x10 ¹¹
26.11.2011	4.59x10 ¹⁸	4.59x10 ¹¹

Table 4.2: Total released energy between 23 October - 09 December

27.11.2011	1.12x10 ¹⁸	1.12x10 ¹¹
28.11.2011	1.38x10 ¹⁸	1.38x10 ¹¹
29.11.2011	1.91x10 ¹⁸	1.91x10 ¹¹
30.11.2011	3.19x10 ¹⁹	3.19x10 ¹²
01.12.2011	1.81x10 ¹⁸	1.81x10 ¹¹
02.12.2011	3.36x10 ¹⁸	3.36x10 ¹¹
03.12.2011	4.13x10 ¹⁸	4.13x10 ¹¹
04.12.2011	2.15x10 ¹⁹	2.15x10 ¹²
05.12.2011	1.51x10 ¹⁸	1.51x10 ¹¹
06.12.2011	1.25x10 ¹⁹	1.25x10 ¹²
07.12.2011	9.50x10 ¹⁷	9.50x10 ¹⁰
08.12.2011	6.37x10 ¹⁸	6.37x10 ¹¹
Total E	nergy: 2.36x10 ¹⁴ Joule	9

Graph 4.1: Daily released energy (except main shock)

5. Historical and Instrumental Seismicity

This region is a very active in terms of seismicity. Distribution of the earthquakes that occurred in Van and surrounding region from 1900 to present (M>4), historical and instrumental seismicity are given Fig 5.1, Table 5.1, 5.2 and Fig 5.2.

Figure 5.1: Distribution of the earthquakes that occurred Van and Surrounding region from 1900 to present M> 4 (except 2011 earthquakes)

Begining	Year	Latitude	Longitude	Location	Explanation	Intensity	Reference	References
M.S	1881	39	43	Van, Bitlis, Muş	I=x(20),M=7.3(20),Van da 400 ev yıkıldı. Bu deprem 40,20,8 nolu kaynaklarda 30.05-07.06 tarihli iki deprem olarak veriliyor	9	A2	2,40,20,8
M.S	1871	39	43	Van Yöresi	25.03.1871(40), 05-25.03.1871(20), M=5.5	7	B2	8,20,40
M.S	1715	38.95	43.65	Van ve Erciş yöresi		8	B3	2,8
M.S	1704	39	43	Van		7	B2	2,8
M.S	1701	39	43	Van	606 No.lu depremin artçısı olabilir	5	B1	16
M.S	1701	39	43	Van ve yöresi	r5=300 km.,43,65 E(8)	8	B1	16,2,8
M.S	1648	38	44	Hoşap'ın yakın batısı Van		8	C1	19
M.S	1647	39	44	Van, Tebriz, Muş, Bitlis	02.04.1648(16),1646(2),1646 veya 1648(8), 38.47N(8),39.7N(5),43.3E(8),43.0E(5), I=VI(8,5),M=3.8(5),h=10km(5)	9	A1	2,16,8,5
M.S	1441	38	42	Van, Bitlis, Muş	l=X(20),30.000 ölü(8,2), Nemrut Dağı'nın volkanik etkinliğiyle birlikte(2,21)	8	A1	8,2,20,21
M.S	1282	39	43	Ahlat,Erciş	427 No.lu Depremle idantik olabilir	0	C3	16
M.S	1276	39	43	Ahlat, Erciş, Van	I=VII(8),r5=200km.	8	B2	8,2
M.S	1245	39	43	Ahlat, Van, Bitlis, Muş	I=VI(8)	7	B2	8,2
M.S	1110	39	44	Van	I=IX(8),1111(8)	8	B2	16,8

Table 5.1: Historical period seismicity

Date	Time	Latitude	Longitude	Magnitude
28.04.1903	23:39	39.14	42.65	6.3
06.05.1930	22:34:23	38.22	44.66	7.2
10.09.1941	21:53:57	39.45	43.32	5.9
20.11.1945	06:27:58	38.63	43.33	5.2
25.06.1964	00:11:52	39.13	43.19	5.3
24.11.1976	22:15.6	39.0506	44.0368	7.2
17.01.1977	19:24.7	39.2703	43.7006	5.1
25.06.1988	15:38.3	38.5034	43.0727	5.0
15.11.2000	05:34.9	38.51	43.01	5.7

Table 5.2: Damaging earthquakes in instrumental period

Figure 5.2: Damaging earthquakes in instrumental period

Centroid moment tensor of two earthquakes that occurred in the same region in 2001 and 2004 were done by Switzerland Seismology Center (SED) Fig 5.3.

Figure 5.3: Centroid moment tensor solutions of 2001 and 2004 earthquakes

6. Effects of Earthquake on the Field

After the earthquake, one team who tasked in the AFAD Presidency went to earthquake area in the same day for the investigation of surface deformation on the field. Investigation areas are given Fig.6.1 and geographical descriptions related to these areas are given Table 6.1.

Figure 6.1: Investigation areas in the field

Investigation areas	Location	Longitude	Latitude (UTM)	Explanation
1	K70D	351970	4271839	Van-Erciş Highway
2	K70D	349315	4271478	Bardakçı-Topaktaş Stablized Road
3		353282	4272200	Organized Industrial Site (OIS) Irrigation Canal Deformation
4		357187	4273393	10 cm rise, Irrigation Canal 4 km NE of OIS
5		357205	4273891	Fault escarpment and morphological trace.South part of Asit Village
6		371971	4281956	Erçek Lake West Coast
7		338832	4247507	Edremit Town Köşk Village
8		355404	4280776	Yeniköşk Road
9		355679	4287567	Van-Erciş Highway
10		363382	4299794	Van-Erciş Highway West Part of Gedikbulak Village
11		351772	4297239	Rock Fall in between Halkalı-Yeşilsu Villages
12		345725	4275992	Landslip and Lateral Spreading in Topaktaş Village
13		346493	4274840	Liquefaction and Lateral Spreading

Table .6.1: Geographical descriptions related to investigation area.

7. Surface Faulting Studies

Earthquake did not caused any apparent faulting on the surface however some deformation trace is observed on the man-made structures such as irrigation channels, asphalt roads depends on the NW compression (Fig.7.1-7.5).

Figure 7.1: 3D Topographic map showing the fault

(c) (d) Figure 7.2: Deformation that is observed on the Van-Erciş Highway

Figure 7.3: a) Surface break on the Topaktaş way. b) Deformation on the irrigation canal.

Figure 7.4: Deformation on the irrigation canal depends on the compression regim

Figure 7.5: Surface deformation and fault escarpment (NE part of organized industrial site)

It was observed, as a result of the field studies, the fault (N60,70E) that caused earthquake was a buried fault. Morphological trace of fault is observed on the shaded relief map and 3D digital elevation model map (Fig.7.6, 7.7).

Figure 7.6: 3D Digital elevation model map

Figure 7.7: Shaded relief map showing the morphology of the fault

8. In-SAR Studies

It was seen displacement that occurred after the earthquake on the interferogram that was produced by NASA according to COSMO Skymed image which was taken from Italy Space Agency between 10-26 September (Fig.8.1). It is projected on the interferogram, as a topographic maximum 80 cm rise in the north part of fault and between 5-40 cm rise in the west part of Erçek Lake. Based on this information, some traces were investigated which signified on the interferogram however level change did not observe lake level and rocks which is near the lakeshore (Fig.8.2).

Figure 8.1: COSMO-SkyMed (CSK) interferogram (InSAR) image (20 cm between the same colors in the circle) for detailed information http://supersites.earthobservations.org/van.php

Figure 8.2: Photos about traces of algae on the limestone (west cost of Erçek Lake)

9. Secondary Effects Caused by the Earthquake

After the earthquake it was observed landslip, rock fall, liquefaction and lateral spreading in the study area (Fig.9.1-9.3).

(a)

Figure 9.1. Secondary effets examples;

- (a) Surface failure on the Yeniköşk way, (b) Subsidence in Van-Erciş way,
- (c) Landslip in the west of Gedikbulak village, (d) Liquefaction,
- (e) Activation on the old landslip block,
- (f) Rock fall between Halkalı-Yeşilsu villages

Figure 9.2: Liquefaction between Arısu-Topaktaş villages (Orthophoto image produced by General Command of Mapping)

Figure 9.3. Surface deformation examples:
(a) Lateral spreading near the Topaktaş village,
(b) Current landslip near the Topaktaş village,
(c and d) Landslip near the Köşk village.

10. Evaluation of Strong Motion Records

National Strong Motion Network operated by AFAD also calculated the acceleration values for these earthquakes. The peak ground acceleration value recorded at Muradiye Station after 23 October 2011 earthquake and the values are 178.5 cm/sn² (N-S Component), 168.5 cm/sn² (E-W Component) and 75.5 cm/sn² (Vertical Component) (Table 10.1) (Fig.10.1) .The peak ground acceleration value recorded at Van Station after 09 November 2011 earthquake and the values are 148.1 cm/sn², (N-S Component) 245.9 cm/sn² (E-W Component) and 150.5 cm/sn² (Vertical Component). The values of Edremit Station are 65.7 cm/sn² (N-S Component), 102.6 cm/sn² (E-W Component) and 44.3 cm/sn² (Vertical Component) (Table 10.2) (Fig.10.2). The peak ground acceleration value recorded at Van Muradiye Station after 18 November 2011 earthquake and the values are 13.5 cm/sn² (N-S Component), 16 cm/sn² (E-W Component) and 10 cm/sn² (Vertical Component) (Table 10.3) (Fig.10.3). When records of Muradiye and Van Stations area analyzed in terms of response spectra, both ground motions are below the design spectra defined for 1st degree earthquake zone.

	S	TATION		ACCE	ELERATIO	N (gal)	Distance of between	Shear Wave
N	СІТҮ	TOWN	RECORDER	NS	EW	UD	epicenter and station R _{epi} (km)	Velocity V _{s30} (m/sn)
1	Van	Muradiye	SMACH	178.5	168.5	75.5	42	293
2	Muş	Malazgirt	SMACH	44.5	56.0	25.5	95	311
3	Bitlis	Merkez	CMG-5TD	89,66	102,24	35,51	116	Alluvium*
4	Ağrı	Merkez	CMG-5TD	18,45	15,08	7,21	121	295
5	Siirt	Merkez	CMG-5TD	9,90	9,16	7,04	158	Alluvium*
6	Muş	Merkez	CMG-5TD	10,3	6,86	4,64	170	315
7	Bingöl	Solhan	CMG-5TD	4,58	4,19	2,46	211	463
8	Bingöl	Karlıova	CMG-5TD	7,52	11,08	4,65	222	Stiff*
9	Batman	Merkez	CMG-5TD	8,29	8,58	3,74	223	450
10	Mardin	Merkez	CMG-5TD	2,00	1,90	1,58	284	Stiff*
11	Elazığ	Beyhan	CMG-5TD	1,20	1,19	0,99	289	Stiff*
12	Elazığ	Palu	CMG-5TD	2,11	1,64	1,72	307	329
13	Elazığ	Kovancılar	CMG-5TD	1,45	1,66	1,20	313	Alluvium*
14	Erzincan	Tercan	CMG-5TD	2,37	3,43	2,26	289	320
15	Erzincan	Merkez	CMG-5TD	1,53	1,29	0,71	358	314
16	Bayburt	Merkez	CMG-5TD	1,35	1,14	1,27	327	Stiff*
17	Gümüşhane	Kelkit	CMG-5TD	1,05	0,88	1,25	378	Alluvium*
18	Şanlıurfa	Siverek	CMG-5TD	2,00	3,06	0,96	378	Alluvium*
19	Malatya	Pötürge	CMG-5TD	0,99	0,99	0,94	405	Stiff*
20	Adıyaman	Kahta	CMG-5TD	2,96	2,70	1,64	437	Alluvium*
21	Adıyaman	Gölbaşı	CMG-5TD	1,12	0,74	0,35	521	469
22	K.Maraş	Merkez	CMG-5TD	1,74	2,18	0,96	590	317

Table 10.1: Acceleration values and site information for the 23 October 2011, Ml=6.7, Mw=7.0 Van Earthquake.

*Site information was determined as a result of observations.

Figure 10.1: Distribution of the recorded stations and peak ground accelerations for 23 October 2011, Ml=6.7, Mw=7.0 Van Earthquake.

Table 10.2: Acceleration values	and site information for	r the 09 November 2011	, Ml=5.6 Van-
Edremit Eartquake.			

		STATION	TYPE OF	ACCEI	LERATIO	N (gal)	Distance of between enicenter and	Shear Wave Velocity
Ν	CITY	TOWN	RECORDER	NS	EW	UD	station R _{epi} (km)	V _{S30} (m/sn)
1	Van	Merkez	CMG-5TD	148,1	245,9	150,5	12.7	363
2	Van	Edremit	GSR-16	65,7	102,6	44,3	2.9	Stiff*
3	Muş	Malazgirt	SMACH	3.0	4.0	2.0	101	311
4	Van	Muradiye	SMACH	13	9,5	4,5	74.1	293
5	Bitlis	Merkez	CMG-5TD	3,9	5,8	2,1	97.8	Alluvium*

*Site information was determined as a result of observations.

Figure 10.2: Distribution of the recorded stations and peak ground accelerations for 09 November 2011, Ml=5.6 Van-Edremit Earthquake.

Table 10.3: Acceleration values and site	information for the	18 November	2011, Ml	=5.2
Van Muradiye Earthquake.				

		STATION	TYPE OF	ACC	ELER (gal)	ATION	Distance of between epicenter and	Shear Wave Velocity
N	CITY	TOWN	RECORDER	NS	EW	UD	station R _{epi} (km)	V _{S30} (m/sn)
1	Van	Muradiye	SMACH	13,5	16	10	18,9	293
2	Van	Özalp	CMG-5TD	9,25	7,36	2,32	23,7	Stiff*
3	Van	Çaldıran	CMG-5TD	1,34	1,43	0,56	35,7	Alluvium*
4	Van	AFAD	CMG-5TD	3,24	6,27	2,33	51,3	Alluvium*

*Site information was determined as a result of observations.

Figure 10.3: Distribution of the recorded stations and peak ground accelerations for 18 November 2011, Ml=5.2 Van Muradiye Earthquake.

11. Corrected Acceleration-Time, Velocity-Time and Displacement-Time Waveforms

Corrected acceleration-time, velocity-time and displacement-time waveforms that refers to 23 October 2011 Earthquake (Ml=6.7), and 09 November 2011 Earthquake (Ml=5.6) are given Fig. 11.1-11.9.

Figure 11.1: NS direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Muradiye station)

Figure 11.2: EW direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Muradiye station)

Figure 11.3: Vertical direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Muradiye station)

Figure 11.4: NS direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Bitlis station)

Figure 11.5: EW direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Bitlis station)

Figure 11.6: Vertical direction acceleration, velocity and displacement components for 23 October 2011, Ml=6.7 Van-Merkez Earthquake (Bitlis station)

Figure 11.7: NS direction acceleration, velocity and displacement components for 09 November 2011, Ml=5.6 Van-Edremit Earthquake (Van-Merkez station)

Figure 11.8: EW direction acceleration, velocity and displacement components for 09 November 2011, Ml=5.6 Van-Edremit Earthquake (Van-Merkez station)

Figure 11.9: Vertical direction acceleration, velocity and displacement components for 09 November 2011, Ml=5.6 Van-Edremit Earthquake (Van-Merkez station)

12. Effective Durations of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6

One of the important parameters during the earthquake is a duration of strong ground motion. Duration of strong shaking play an essential role on the structural damage and engineering construction problems. Therfore effective duration changes was calculated for Ml=6.7 earthquake and Ml=5.6 earthquake (Fig.12.1, 12.2).

Figure 12.1: 23 October 2011 Ml=6.7 Van-Merkez Earthquake effective durations a) Muradiye station record N-S direction, b) Bitlis station record E-W direction.

Figure 12.2: 09 November 2011 MI=5.6 Van-Edremit Earthquake effective durations a) Van station record E-W direction, b) Van-Edremit station record E-W direction.

13. Fourier Spectrums of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6

Fourier spectrums of Ml=6.7 earthquake was calculated by using horizontal component of Muradiye and Bitlis station records (Fig. 13.1,13.2). Similarly, horizontal component of Van and Edremit station record used for Ml=5.6 earthquake (Fig 13.3, 13.4).

Figure 13.1: Fourier spectrums of 23 October 2011, Ml=6.7 Van-Merkez earthquake a) Muradiye record NS direction, b) Muradiye record EW direction.

Figure 13.2: Fourier spectrums of 23 October 2011, Ml=6.7 Van-Merkez earthquake a) Bitlis record NS direction, b) Bitlis record EW direction.

Figure 13.3: Fourier spectrums of 09 November 2011, Ml=5.6 Van-Edremit earthquake a) Van record NS direction,

b) Van record EW direction.

Figure 13.4: Fourier spectrums of 09 November 2011, Ml=5.6 Van-Edremit earthquake a) Edremit record NS direction,

b) Edremit record EW direction.

14. Response Spectrums of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6

To describe earthquake force; Acceleration, velocity and displacement response spectrum of acceleration records are calculated. This method is commonly used approach in engineering application (Ohsaki,1991). In order to MI=6.7 Van-Merkez earthquake and MI=5.6 Van-Edremit earthquake, response spectrum that obtained from acceleration records were calculated for %5, %10 and %15 damping ratio (Fig 14.1-14.4).

Figure 14.1: Response spectrums of 23 October 2011, Ml=6.7 Van-Merkez earthquake a) Muradiye record NS component

Figure 14.3: Response spectrums of 09 November 2011, MI=5.6 Van-Edremit earthquake a) Van-Merkez record NS component

b) Van-Merkez record EW component.

Figure 14.4: Response spectrums of 09 November 2011, MI=5.6 Van-Edremit earthquake a) Van-Edremit record NS component b) Van Edremit record EW component

b) Van-Edremit record EW component.

15. Compare with Acceleration Response Spectrum and Design Spectrum of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6

Compare with acceleration response spectrum and design spectrum (according to Turkish Earthquake Resistant Code (TDY) 2007) of 23 October 2011 Van earthquake Ml=6.7 and 09 November 2011 Van-Edremit earthquake Ml=5.6 are given Fig. 15.1,15.2. When examined that calculated response spectrum curve, it is seen each of two ground motion under the design spectrum that identified for first degree earthquake zone.

Figure 15.1: Compare with Muradiye station NS and EW component response spectrum and TDY 2007 design spectrum

Figure 15.2: Compare with Van-merkez station NS and EW component response spectrum and TDY 2007 design spectrum.

16. Compare with Some Attenuation Relationship of 23 October 2011 Van Earthquake Ml=6.7 and 09 November 2011 Van-Edremit Earthquake Ml=5.6

Peak ground acceleration that refers to horizontal component compared with some attenuation relationship that proposed by some researchers (Fig.16.1-16.4).

Figure 16.1: Compare with peak ground horizontal acceleration value and some attenuation relationship for 23 October 2007 Mw=7.0 Van-Merkez earthquake(soil group:B)

Figure 16.2: Compare with peak ground horizontal acceleration value and some attenuation relationship for 23 October 2007 Mw=7.0 Van-Merkez earthquake(soil group:C)

Figure 16.3: Compare with peak ground horizontal acceleration value and some attenuation relationship for 09 November 2011 Mw=5.7 Van-Edremit earthquake(soil group:B)

Figure 16.4: Compare with peak ground horizontal acceleration value and some attenuation relationship for 09 November 2011 Mw=5.7 Van-Edremit earthquake(soil group:C)

17. Structural Damage Assessment

Building stock in Van and Erciş Center generally consists of 4-8 storey reinforced concrete structures, which is very common in our country. In most of the buildings, asmolen slab (infilled joist slab) is used. Especially in collapsed buildings, shops having almost two times normal floor height have been determined. In villages, most of the existing building stock comprises of adobe, stone and brick masonry buildings with ages longer than their service life. They are constructed as one or two-storey by local people without taking into consideration any regulation, standard and earthquake resistant design rules. It is observed in the masonry structures at this region that horizontal and vertical supporting members, used to distribute loads safely, are made from wood, number of these members is inadequate and they are placed irregularly. Also, it is determined that lengths of their connections to load carrying walls are very short and weak. Briefly, poor quality construction material, structures with non-conforming earthquake code and lack of inspection are the main reasons of damage in the region (Fig.17.1-17.6).

Weak Story and Slab Effect

Figure 17.1:Examples of weak storey and slab effect. (a. Weak storey, b. Weak storey and asmolen slab, c. Ground floor destroyed. d. Heavy slab)

Concrete Effect

Figure 17.2: Crumbly concrete example

Figure 17.3: Crumbly concrete example

Figure 17.4: Weak storey example

Reinforcement Effect

Figure 17.5: a) Striped reinforcement , b) Striped reinforcement c) insufficient stirrup and shell concrete.

Damage to Masonry Construction

Figure 17.6: a) Briquet filled collapsed building, b) Adobe filled collapsed buildingc) Adobe+briquet filled collapsed building, d) Fine grained binding material (cat litter) e) Collapse to corner join .

18. Seismic Intesity Analysis

After both Van-Merkez and Edremit earthquakes, peak ground acceleration and seismic intensities were predicted for earthquake and surrounding areas. The highest acceleration value is calculated as 351 cm/sn^2 near Kasımoğlu and Yumru villages close to the epicenter of the Van-Merkez earthquake. For the Van-Edremit earthquake the highest acceleration values are calculated as 53 cm/sn^2 at Van City Center and 58 cm/sn^2 in Edremit. Seismic intensity values calculated by using these acceleration values and for Van-Merkez earthquake, maximum intensity is predicted as *IX* whereas the maximum intensity value is predicted as *VI* for Van-Edremit earthquake (Fig.18.1-18.4).

Figure 18.1: Peak ground acceleration distribution of 23 October 2011, M_w=7.0 Van-Merkez earthquake

Figure 18.2: Seismic intensty map of 23 October 2011, M_w=7.0 Van-Merkez earthquake

Figure 18.3: Peak ground acceleration distribution of 09 November 2011, M_w=5.7 Van-Edremit earthquake

Figure 18.4: Seismic intensty map of 09 November 2011, M_w=5.7 Van-Edremit earthquake

19. Using Orthophoto and Satellite Image in Van Earthquake

During our studies after Van Earthquake, we have benefited from the opportunities of high technology products as much as possible. As Authorized User to International Charter "Space and Major Disasters", AFAD activated the system immediately and following intense collaboration with Charter, pre and post earthquake satellite images and their analysis were sent to the relevant authorities both in Van and Ankara (Table 19.1-19.2) (Fig. 19.1-19.4). Similarly, orthophotos produced by General Command of Mapping (HGK) provided benefits to the post-disaster rehabilitation and recovery activities (Table 19.3,19.4) (Fig.19.5-19.7). Those images were provided by HGK very promptly and contributed to the monitoring of temporary settlement areas of tents, site selection activities. It also revealed the fact that very fact acquisition of those images will be very useful for also future events.

Satellite Image	Resolution	Band	Image Date	Location
WorldView-2	2.0 m.	Multi band	06 May 2011	Van
MorldView 2	0.5 m.	Single band	27 Juno 2011	Eroio
vvonuview-z	2.0 m.	Multi band	Z7 Julie 2011	ElCiş
Morld\/iow 2	0.5 m.	Single band	06 May – 24	Güvenli Alaköv
	2.0 m.	Multi band	June 2011	Guvenii- Alakuy
QuickBird 2	0.6 m.	Single band	02 October 2011	Ditlio
QUICKDII U-2	2.5 m.	Multi band		DIUIS

Table 19.1 Satellite image and features before the earthquake

Figure 19.1: WorldView-2 (2.0 m resolution) image before earthquake.(Van)

Figure 19.2: WorldView-2 (0.5 m resolution) image before earthquale (Erciş)

Satellite Image	Resolution	Band	Image Date	Location
QuickBird 2	0.6 m.	Single band	26.29 October 2011	Erojo
QUICKDII U-2	2.5 m.	Multi band		Erciş
Ikonos	1.0 m.	Single band	26.28 Octobor 2011	Freie
IKUIIUS	4.0 m.	Multi band		Erciş
QuickBird 2	0.6 m.	Single band	26 Octobor 2011	Froio
QUICKDII U-2	2.5 m.	Multi band		Erciş
QuickBird 2	0.6 m.	Single band	26 Octobor 2011	Bitlic
QUICKBII U-2	2.5 m.	Multi band	20 OCIODEI 2011	Dittis

1 uoto 17.2 Sutonito iniugo una routaros arter tito ourtinguaito
--

Figure 19.3: QiuckBird-2 (0.6 m resolution) image after the earthquake (Erciş)

Figure 19.4: QiuckBird-2, Iconos images after the earthquake (Erciş) (red triangles show a heavy damage collapse building, yellow triangles show a potantial damage building and green polygons show a tent city).

Orthophoto Image that was Produced by General Command of Mapping

Coverage Area of Orthophoto Image	Image Date	Coordinate System
Erciş	2010	UTM ED-50
Van Merkez	2010	UTM ED-50
Van Alaköy	2010	UTM ED-50
Van Güvençli	2010	UTM ED-50
Van Topraktaş	2010	UTM ED-50
Van Tevekli	2010	UTM ED-50

Table 19.3 Orthophoto image and features before the earthquake

Coverage Area of Orthophoto Image	Image Date	Coordinate System
Erciş	2011	UTM ED-50
Van Merkez	2011	UTM ED-50
Van Alaköy	2011	UTM ED-50
Van Güvençli	2011	UTM ED-50
Van Topraktaş	2011	UTM ED-50
Van Tevekli	2011	UTM ED-50

Figure 19.5: Determination of collapsed building in Erciş village a) before earthquake, b) after earthquake.

Figure 19.6: Erciş village image after the earthqauke

Figure 19.7: Van city center image after the earthqauke

3D orthophoto images of earthquake zone were produced by the help of CIS methods (Fig.19.8).

Figure 19.8: 3D orthophoto image of Erciş

REFERENCES

- Ambraseys, N. N. and Finkel C., 1995. The Seismicity of Turkey and Adjacent Areas: A Historical Review, 1500-1800. Eren Yayıncılık ve Kitapçılık, İstanbul. 240 pp.
- Bath, M. 1979, "Introduction to Seismology"
- Boore, D. M., Joyner W. B. and Fumal, T. E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: A Summary of recent work. Seismological Research Letters, 68 (1), 128-153 pp.
- Bozkurt, E., 2001. Neotectonics of Turkey-asynthesis. Geodinamica Acta, 14, 3-30.
- Calvi, S., 1941.Türkiye ve bazı Komşu ülkelerin deprem kataloğu. Çeviren Erdoğan Kumcu. 1979 İstanbul.
- Çeken, U., Beyhan, G. ve Gülkan, P. 2008. Kuzeybatı Anadolu Depremleri İçin Kuvvetli Yer Hareketi Azalım İlişkisi, 18. Uluslararası Jeofizik Kongre ve Sergisi, 14-17 Ekim 2008, vol:3B14, s:1-4, MTA Kültürü Sitesi, Ankara.
- Havskov, J., Ottemöller, L., Voss, P. SEISAN "Earthquake Analysis Software".
- Kalkan, E., and Gülkan, P., 2004. Site-dependent spectra derived from ground motion records in Turkey, Earthquake Spectra Vol.20, No.4, Nov. 2004.
- Koçyiğit, A., Yılmaz, A., Adamia, S., and Kuloshvili,S., 2001. Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177-195.
- Ohsaki Y. (1991). Deprem Dalgasının Spektral Analizine Giriş, (Çev. M. İpek), İnşaat Mühendisleri Odası, İstanbul.
- Özbey, C., SARI, A., Manuel, L., Erdik, M. and Fahjan, Y. 2003. Empirical strong ground motion attenuation relations for Northwestern Turkey. Fifth National Conference on Earthquake Engineering, Istanbul, Turkey.
- Sadigh, K., Chang, S. Y., Egan, J. A., Makdisi, F. and Youngs, R. R., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, V: 68, No: 1, p: 180-189.
- Sieberg, A., 1932. Erdbebengeographie, in ed. B. Gutenberg, Handbuch der geophysik 4:775-812. Berlin.
- Şaroğlu, F. ve Yılmaz, Y., 1986. Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri. Maden Tetkik ve Arama Dergisi, 107, 73-94.
- Şengör A.M.C. and Kidd W.S.F., 1979. Postcollisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55, 361–376.

- Şengör, A.M.C., and Yılmaz, Y, 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.
- TDY-2007. Türkiye Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, T. C. Bayındırlık ve İskan Bakanlığı, Ankara.
- Tchalenko, J.S., 1977. A reconnaissance of the seismicity and tectonics at the northern border of the Arabian Plate (Lake Van region). Revue de Geographie Physique et de Geologie Dynamique. Vol. XIX, Fasc. 2, pp 189-208, Paris, 1977.
- Üner, S., Yeşilova, Ç., Yakupoğlu, T., Üner, T., 2010. Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu. Yerbilimleri, 31 (1), 53-66. Hacettepe Üniversitesi Yerbilimleri ve Uygulama ve Araştırma Merkezi Dergisi.

Waldhauser, F. 2001, HYPODD "A Program to Compute Double-Difference Hypocenter Locations".

1/100000 Ölçekli Jeoloji Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara. 1/500000 Ölçekli Jeoloji Haritası, MTA Genel Müdürlüğü, Ankara.

References of Historical Erathquakes

Code	Reference
	Sh balin,N.V., Karnik,V.,Hardzievski,D.(1974) Catalogue of Earthquakes
1	UNESCO,Skopje,Yugoslavia
	Maravelakis, M.J. (1941) Beitrage zur Kentnis der Erdbebengeschicte von
	Griechenland und den Nachbarlandernauf Grund der
	Erinnerungen. Veröffentlichungen der Reichsanstalt für Erdbebenforschung in
10	jena
	Pınar, N., Lahn, E. (1952) Türkiye Depremleri İzahlı Kataloğu. T.C. Bayındırlık
11	Bak.Yapı ve İmar İş.Reis.Y.Seri 6,Sayı 36
	İncicyan, P.G. (1976) Onsekizinci sırda İstanbul. İst. Fetih Cemiyeti Ens. Yayın
12	No.43,Baha Matbaasi,İstanbul
	Arıncı,R.(1945)Arzda ve Yurdumuzda Zelzele Bölgeleri.Çorumlu
13	Mecmuası,Çorum Halkevi Yayını,Yıl 4,Sayı 29,Çorum
	Yücel.E.(1971)İstanbul Depremleri Hayat Tarih Mecmuası,Sayı 6,Temmuz
14	1971,Cilt 2,S.58-63
15	Muralt Cronologie Byzantine.Prof.Dr.H.Soysal Arsivi,İstanbul
	Andreasyan, H. (1970) Ermeni Kaynaklarından Derlenmiş Deprem
16	Listesi Yayımlanmamış, Prof.Dr.H.Soysal Arşivi,İstanbul.
17	Naima Tarihi Cilt 4.S.17-289.Cilt5. S.145-267
	Akvol .İ.H.(1938)Erzincan Zelzelesi ve Son Fevezanlar.Ülkü Halkevleri
18	Dergisi, Cilt 11, Savı 64, Haziran 1938
	Ambrasevs, N.N. (1975) Studies in Historical Seismicity and
40	Testenia Cooduranica Teday Chan 2 The Dayal Cool London

19 Tectonics.Geodynamics Today,Chap.2,The Royal Soc.,London.

2	Calvi,V.S.(1941)Erdbebenkatalog der Turkei und Einiger Benaehbarter Gebiete Xayımlanmamış Banor No 276 MTA Enstitüsü 1941 Ankara
	Öcal N (1968) Türkiyenin Sismisitesi ve Zelzele Coŭrafvasu 1850-1960 Yılları
20	İçin Zelzele Katoloğu Kandilli Rasathanesi Yayınları No:8, İstanbul
	Andreasyan, H. (1973) xıv VE xv. Yüzyil Türk Tarihine ait Ufak Kronolojiler,
21	Kolofanlar . Ist. Uni. Ede. Fak. Tarih Ens. Dergisi, Sayı 3, Istanbul
	Topkapı Sarayı Kütüphanesi Revan Kitapları No:1101, Varak 105/b, 72/b,
22	İstanbul
	Cezar, M. (1963) Türk Sanat Tarihi Araştırmaları ve İncelemeleri I. Güzel
23	Sanatlar Akademisi, Türk Sanatı Tarihi Enstitü Yayınları No:1, S:327-414
	Kömürcüyan, E: Ç: (19529 XVII. Asırda İstanbul Tarihi İstanbul Üni. Edebiyat
24	Fak. Yayınları , No:506, İstanbul
	Coşar, Ö.S. (1979) Fransanın İzmir Dosyası 19 Aralık 1979 tarihli Yeni Asır
25	Gazetesi , İzmir
26	H. Saadettin Tarihi Cilt II El Yazması, İstanbul Üni. Kütüphanesi, İstanbul
27	Reşit Tarihi Cilt II s.122-213 El Yazması, İstanbul Üni. Kütüphanesi, İstanbul
28	İstanbul İl Yıllığı (1973) S. 6-230 . İstanbul Üni, Kütüphanesi, İstanbul
29	İstanbul İl Yıllığı (1973) S. 167-270 İstanbul Üni Kütüphanesi İstanbul
_•	Ambrasevs N N (1965) The Seismic History of Cyprus Revue de l'Union
3	Inter de Secours No.3.35-48.Geneva
•	Mambury E(1925)İstanbul Rehber-i Sevvahin Tercüman Gazetesi
30	Arsivi.İstanbul.
	Zincirkıran.N.ve diğerleri(1968)Hürrivet Cep Ansiklopedisi.Hürrivet Gazetesi
31	Yavınları.İstanbul.
	Semdanı Zade(1976)Fındıklı Sülevman Efendi Tarihilst.Üni.Ede.Fak.Yavını
32	No.2088,Cilt1,S.176
	Verrolot, M.P. (1856) Compt-rondu. Tableau des tremblements de terre qui ont
33	eulieu dans l'Empire Ottoman en 1855. Ac de Sei. Paris, Tome 42, p.93-293
	Gökmenzade Hacı Çelebi(Sayyid Hüseyin Rıfat)İşaretnuma(El
34	Yazması), Cebeci Semt Kütüph. No. 1314, Ankara
	Slaars M.B.F. (1932), Çev. Arapzade Cevdet İzmir Hakkında Tetkikat. İzmir ve
35	Havalisi Asarı Atika Muhipleri Yayını ,Sayı6,Marifet Matbaası,İzmir.
36	Deprem Dosyası Cumhuriyet Gazetesi Arşivi, İstanbul.
37	İslam Ansiklopedisi(1966)No.53B.İstanbul Maddesi S.1214-1239
	Swiss Reinsurance Company(1978)Atlas on Seismicity and Volcanism.Swiss
38	Reinsurance Company, October 1977, Switzerland.
	Ambraseys, N.N., Zatobek, A., Taşdemiroğlu, M., Aytun, A. (1968) The Mudurnu
	Valley Eathquake of 22 July 1967. Serial No.622/BMS. RD/AVS, Paris, June
39	1968, UNESCO.
	Plassard-Kogoş(1968)Catalogue des Seismes Re cents a
4	Liban.Ann.Memoires de l'Observ.de Xsara.TomeIV,Cahier 1
	Karnik,V.(1971) Seismicity of the Eurpean Area 2.D.Rediel Publishing
40	Company /Dortrecht,Holland
	Kondorskaya, N.V., Shebalin, N.V. (1977) New Catalogue of strong Earthquakes
5	on the Territory of USSR from the Ancientest times to 1975. Moscow
	Collection Academique Tome VI de la Partie Etrangere et Premier Tome de la
6	Physique Experimantale Separee.
	Broghton, T:R:S:(1938) An Economic survey of Ancient Roma.Vol.IV, The
7	Johns Hopkins Press, Baltimore

Ergin,K.,Güçlü,U.,Uz,Z.(1967)Türkiye ve civarının Deprem Katoloğu.İ:T:Ü:

- 8 Maden Fak.Arz Fiziği Ens.Yayın No.24,İstanbul
 - Francis,I.(1947)Bizans Kaynaklarına göre Orta Şark'ta Vukubulan Zelzeleler İ.Ü.Ed.Fak.Coğ.BI.Doktora Tezi İ.Ü.Kitaplığı No.1420
 - A1 Kaynak sayısı üç'den fazla bilgi ve belge düzeyi yüksek
 - A2 Kaynak sayısı üç'den az bilgi ve belge düzeyi yüksek Kaynak sayısı üç'den fazla bilgi ve belgeleri geliştirilmeye gereksinim
 - A3 gösteriyor.
 - B1 Kaynak sayısı üç veya daha az,bilgi ve belge düzeyi orta Kaynak sayısı üç veya daha az,bilgi ve belgeleri geliştirilmeye gereksinim
 - B2 gösteriyor düzeyi orta
 - **B3** Kaynak sayısı üç veya daha az,bilgi ve belgeleri yetersiz.
 - C1 Kaynak sayısı yetersiz.
 - C2 Bilgi ve belgeleri yetersiz.
 - C3 Hem kaynak sayısı ,hemde bilgi ve belgeleri yetersiz.

Web Pages

9

- ✓ <u>www.afad.gov.tr</u>
- ✓ <u>www.deprem.gov.tr</u>
- ✓ <u>www.zki.dlr.de</u>
- <u>http://supersites.earthobservations.org/van.php</u>
- ✓ www.hgk.msb.gov.tr/urunler/fotogrametrik/ortofoto.htm
- ✓ <u>www.disasterscharter.org</u>
- www.seismo.ethz.ch/prod/tensors/index_EN
- http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usb0006bqc/neic_b 0006bqc_cmt.php